Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca2+ entry via NOX1 and reactive oxygen species
نویسندگان
چکیده
AIMS Sphingosylphosphorylcholine (SPC) elicits vasoconstriction at micromolar concentrations. At lower concentrations (≤1 µmol/L), however, it does not constrict intrapulmonary arteries (IPAs), but strongly potentiates vasoreactivity. Our aim was to determine whether this also occurs in a systemic artery and to delineate the signalling pathway. METHODS AND RESULTS Rat mesenteric arteries and IPAs mounted on a myograph were challenged with ∼25 mmol/L [K+] to induce a small vasoconstriction. SPC (1 µmol/L) dramatically potentiated this constriction in all arteries by ∼400%. The potentiation was greatly suppressed or abolished by inhibition of phospholipase C (PLC; U73122), PKCε (inhibitory peptide), Src (PP2), and NADPH oxidase (VAS2870), and also by Tempol (superoxide scavenger), but not by inhibition of Rho kinase (Y27632). Potentiation was lost in mesenteric arteries from p47(phox-/-), but not NOX2(-/-), mice. The intracellular superoxide generator LY83583 mimicked the effect of SPC. SPC elevated reactive oxygen species (ROS) in vascular smooth muscle cells, and this was blocked by PP2, VAS2870, and siRNA knockdown of PKCε. SPC (1 µmol/L) significantly reduced the EC50 for U46619-induced vasoconstriction, an action ablated by Tempol. In patch-clamped mesenteric artery cells, SPC (200 nmol/L) enhanced Ba2+ current through L-type Ca2+ channels, an action abolished by Tempol but mimicked by LY83583. CONCLUSION Our results suggest that low concentrations of SPC activate a PLC-coupled and NOX1-mediated increase in ROS, with consequent enhancement of voltage-gated Ca2+ entry and thus vasoreactivity. We speculate that this pathway is not specific for SPC, but may also contribute to vasoconstriction elicited by other G-protein coupled receptor and PLC-coupled agonists.
منابع مشابه
Sphingosylphosphorylcholine potentiates vasoreactivity and voltage-gated Ca entry via NOX1 and reactive oxygen species
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sphingosylphosphorylcholine potenti...
متن کاملOxidative Stress Induces Disruption of the Axon Initial Segment
The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, a...
متن کاملAmyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals.
Amyloid beta protein (A beta), the central constituent of senile plaques in Alzheimer's disease (AD) brain, is known to exert toxic effects on cultured neurons. The role of the voltage-sensitive Ca2+ channel (VSCC) in beta (25-35) neurotoxicity was examined using rat cultured cortical and hippocampal neurons. When L-type VSCCs were blocked by application of nimodipine, beta (25-35) neurotoxicit...
متن کاملPharmacological Correction of Gating Defects in the Voltage-Gated Cav2.1 Ca2+ Channel due to a Familial Hemiplegic Migraine Mutation
Voltage-gated ion channels exhibit complex properties, which can be targeted in pharmacological therapies for disease. Here, we report that the pro-oxidant, tert-butyl dihydroquinone (BHQ), modulates Ca(v)2.1 Ca²⁺ channels in ways that oppose defects in channel gating and synaptic transmission resulting from a familial hemiplegic migraine mutation (S218L). BHQ slows deactivation, inhibits volta...
متن کاملMEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells.
OBJECTIVE Blood vessel hemodynamics have profound influences on function and structure of vascular cells. One of the main mechanical forces influencing vascular smooth muscle cells (VSMC) is cyclic stretch (CS). Increased CS stimulates reactive oxygen species (ROS) production in VSMC, leading to their dedifferentiation, yet the mechanisms involved are poorly understood. This study was designed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 106 شماره
صفحات -
تاریخ انتشار 2015